Your browser is out of date
With an updated browser, you will have a better Medtronic website experience. Update my browser now.
The IN.PACT™ Admiral™ DCB provides unparalleled effectiveness and safety, with 75% of patients re-intervention free at five years.1
Data comes from different individual studies and may differ in a head-to-head comparison, and therefore may not be predictive of clinical results.
IN.PACT global full cohort five-year freedom from CD-TLR rate: 69.4%2
Note: Provisional stent rate for IN.PACT Admiral is 42.5% and is for Lutonix 65.2%.9,13
Reach a Medtronic sales rep
Contact us here
CardioVascular Lifeline Customer Support
(877) 526-7890
rs.cstechsupport@medtronic.com
Orders
(888) 879-0977
rs.canomshospitals@medtronic.com
24-hour technical support
763-514-4000 (worldwide)
™Third-party brands are trademarks of their respective owners. All other brands are trademarks of a Medtronic company.
Patency rates from clinical trials may be calculated differently. Chart is for illustrative purposes only and results may differ in head-to-head comparison, and therefore may not be predictive of clinical results.
Primary patency is defined as freedom from CEC-adjudicated clinically driven TLR and from core lab-adjudicated binary restenosis. Patency per Kaplan-Meier estimates at 12 months (day 365).
Primary patency based on intent-to-treat (ITT) analysis. Primary patency is defined as freedom from clinically driven target lesion revascularization and freedom from restenosis as determined by duplex ultrasound-derived PSVR ≤ 2.4. Indication statement for IN.PACT Admiral (Japan): This device, IN.PACT Admiral Drug Coated Balloon Catheter, is indicated for percutaneous transluminal angioplasty of de novo and non-stented restenotic lesions with length ≤ 200 mm in superficial femoral and popliteal arteries with reference vessel diameters of ≥ 4 mm and ≤ 7 mm.
Primary patency based on intent-to-treat (ITT) analysis. Primary patency per Kaplan-Meier estimate is not available. Primary patency is defined as the absence of binary restenosis (as adjudicated by a blinded core lab) and freedom from target lesion revascularization. Indication statement for Lutonix (Japan): This device, Lutonix Drug-Coated Balloon Catheter, is indicated for treatment of de novo or restenotic lesion with a reference vessel diameter ≥ 4 mm and ≤ 6 mm and a length ≤ 15 cm in the native femoropopliteal artery (excluding in-stent lesion) to improve luminal diameter and to reduce restenosis.
References
1 Laird JA, Schneider PA, Jaff MR, et al. Long-Term Clinical Effectiveness of a Drug-Coated Balloon for the Treatment of Femoropopliteal Lesions. 5-year results from the IN.PACT SFA Trial. Circ Cardiovasc Interv. June 2019;12(6):e007702.
2 Tepe G. 5-year results from the IN.PACT Global Study Prespecified Cohorts: ISR, CTO and Long Lesions. Presented at VIVA, 2021.
3 Mathews SJ. 1- and 2-Year Outcomes. Presented at NCVH 2018. New Orleans, LA.
4 Lyden SP, et al. J Endovasc Ther. 2022;29:929-936.
5 Sachar R, et al. JACC Cardiovasc Interv. 2021;14:1123-1133
6 Sachar R. 2 Year Outcomes. Presented at VIVA 2021; Las Vegas, NV.
7 Broadman M. 3 year outcomes. Presented at LINC 2023; Leipzig, Germany.
8 Primary Patency is listed as reported in the IFU. Lutonix BAW1387400r9 Section 10.3.5 Table 7.
9 IN.PACT Admiral IFU M052624T001. Rev. 1G.
10 Lutonix IFU:BAW1387400r3, Primary patency per KM analysis at day 365.
11 Brodmann M, Keirse K, Scheinert D, et al. Drug-Coated Balloon Treatment for Femoropopliteal Artery Disease: The IN.PACT Global Study De Novo In-Stent Restenosis Imaging Cohort. JACC Cardiovasc Interv. October 23, 2017;10(20):2113-2123.
12 Lutonix IFU: BAW1387400r9.
13 Lutonix IFU BAW1387400r9 - Table 33: Procedural Data (Bailout Spot Stent used Post-DCB Dilatation, 65.2% (45/69).
14 Iida O, Soga Y, Urasawa K, et al. Drug-Coated Balloon vs Standard Percutaneous Transluminal Angioplasty for the Treatment of Atherosclerotic Lesions in the Superficial Femoral and Proximal Popliteal Arteries: One-Year Results of the MDT-2113 SFA Japan Randomized Trial. J Endovasc Ther. February 2018;25(1):109-117.
15 Bard Data: 1-year outcomes from the LEVANT Japan Trial. Pharmaceuticals and Medical Devices Agency. Available at: http://www.pmda.go.jp/medical_devices/2017/M20170830001/780045000_22900BZX00252000_A100_1.pdf. (in Japanese). Accessed March 23, 2022.
16 Lutonix IFU: BAW1387400r5.
17 Stellarex IFU No. P011966.
DCB publication landscape
Medtronic IN.PACT Admiral DCB
18 Tepe G, et al. Circulation. 2015;131:495-502.
19 Iida O, et al. J Endovasc Ther. 2018;25:109-117.
20 Chen Z, et al. J Endovasc Ther. 2019;26:471-478.
21 Zeller T, et al. Circ Cardiovasc Interv. 2019;12:e007730.
22 Shishehbor MH, et al. J Vasc Surg. 2019;70:1177-1191.e9.
23 Kobe DS, et al. J Invasive Card. 2020;32:243-248.
24 Laird JR, et al. J Am Coll Cardiol. 2015;66:2329-2338.
25 Iida O, et al. Catheter Cardiovasc Interv. 2019;93:664-672.
26 Schneider PA, et al. Circ Cardiovasc Interv. 2018;11:e005891.
27 Soga Y, et al. J Endovasc Ther. 2020;27:946-955.
28 Laird JA, et al. Circ Cardiovasc Interv. 2019;12:e007702.
29 Soga Y, et al. Circ J. 2021;85:2149–2156.
30 Krishnan P, et al. J Am Coll Cardiol. 2022;80:1241-1250.
31Schneider PA, et al. J Am Coll Cardiol. 2019;73:2550-2563.
30 Brodmann M, et al. JACC Cardiovasc Interv. 2017;10:2113-2123.
33 Scheinert D, et al. Circ Cardiovasc Interv. 2018;11:e005654.
34 Tepe G, et al. JACC Cardiovasc Interv. 2019;12:484-493.
35 Ansel GM, et al. J Endovasc Ther. 2018;25:673-682.
36 Reijnen MMPJ, et al. J Endovasc Ther. 2019;26:305-315.
37 Micari A, et al. JACC Cardiovasc Interv. 2018;11:945-953.
38 Salisbury AC, et al. JACC Cardiovasc Interv. 2016;9:2343-2352.
39 Pietzsch JB, et al. Cardiovasc Intervent Radiol. 2022;45:298-305.
40 Shishehbor MH, et al. J Am Coll Cardiol. 2022:79:1236-1238.
41 Torsello G, et al. J Endovasc Ther. 2020;27:693-705.
42 Kohi M, et al. J Vasc Interv Radiol. 2020;31:1410-1418.e10.
43 Schneider PA, et al. Catheter Cardiovasc Interv. 2020;96:1087-1099.
44 Zeller T, et al. EuroIntervention. 2022;18:e940-e948.
45 Brodmann M, et al. Cardiovasc Intervent Radiol. 2022;45:1276-1287.
46 Ko YG, et al. Catheter Cardiovasc Interv. 2022;100:1273-1283.
47 Tepe G, et al. JACC Cardiovasc Interv. 2023;16:1065-1078.BD
Lutonix DCB
48 Rosenfield K, et al. N Engl J Med. 2015;373:145-153.
49 Scheinert D, et al. J Endovasc Ther. 2016;23:409-416.
50 Scheinert D, et al. JACC Cardiovasc Interv. 2014;7:10-19.
51 Thieme M, et al. JACC Cardiovasc Interv. 2017;10:1682-1690.
52 Ouriel K, et al. JACC Cardiovasc Interv. 2019;12:2515-2524.
Philips Stellarex DCB
53 Krishnan P, et al. Circulation. 2017;136:1102-1113.
54 Schroeder H, et al. Circulation. 2017;135:2227-2236.
55 Schroë H, et al. Catheter Cardiovasc Interv. 2018;91:497-504.
56 Brodmann M, et al. JACC Cardiovasc Interv. 2018;11:2357-2364.
57 Schroeder H, et al. Catheter Cardiovasc Interv. 2015;86:278-286.
58 Grey WA, et al. Circulation. 2019;140:1145-1155.
59 Lyden SP, et al. J Endovasc Ther. Published online January 8, 2022.
60 Lyden SP, et al. J Vasc Surg. 2022;75:600-607.
Boston Scientific Ranger DCB
61 Sachar R, et al. JACC Cardiovasc Interv. 2021;14:1123-1133.
62 Steiner S, et al. JACC Cardiovasc Interv. 2018;11:934-941.
63 Lichtenberg M, et al. J Cardiovasc Surg (Torino). 2018;59:45-50.
64 Steiner S, et al. Eur Heart J. 2020;41:2541-2552.
65 Soga Y, et al. Heart Vessels. 2022;37:568-573.
66 Schroë H, et al. Vasc Med. 2022;27:457-465.
67 Steiner S, et al. JACC Cardiovasc Interv. 2022;15:2093-2102.