placeCanada – English

Overview

The BIS Sensor is applied directly to the patient’s skin to enable recordings of electrophysiological (such as EEG) signals.

BIS™ technology offers clinicians added security for providing specialized care and comfort for their patients, including those who may be more sensitive to the hemodynamic effects of anesthesia.

BIS™ monitoring technology provides clinicians with valuable information about patient status to help address each patient’s unique anesthetic requirements. This technology may be particularly valuable for:

  • Patients with complex conditions whose status may suddenly or frequently change
  • Patients with cardiovascular conditions
  • Obese patients
  • Trauma patients or others requiring reduced levels of anesthesia

BIS™ values should be interpreted cautiously with certain anesthetic combinations, such as those relying primarily on either ketamine or nitrous oxide/narcotics to produce unconsciousness. Due to limited clinical experience in the following applications, BIS™ values should be interpreted cautiously in patients with known neurological disorders and those taking other psychoactive medications.

YOU ALREADY KNOW US

You know us — and our innovations, which have been improving respiratory and monitoring care for over a century.

Watch Video

Features

The BIS™ bilateral sensor is designed for symmetrical placement to capture bi-hemispheric data.

  • The BIS™ bilateral sensor offers:
  • Peel-and-stick simplicity
  • Zipprep™ technology

The BIS™ bilateral sensor enables detection of hemispheric differences in the brain, which may prove useful for advanced monitoring applications.†

  • BIS™ sensors collect electroencephalograph (EEG) data.
  • BIS™ technology enables simple EEG data collection via a noninvasive sensor applied to the patient’s forehead.

The Bispectral Index (BIS), a processed EEG parameter, is calculated as a rolling average using a moving window of time. This “smoothing” is necessary to prevent excessive fluctuations and allows a value to be calculated when signal is briefly interrupted by artifact (e.g., electrocautery).

Technology

How does our sensor technology work to capture the low-­voltage EEG signal?

First, we use a conductive ink that is printed directly on the surface of the sensor, under the adhesive foam and Zipprep™ technology. This creates an electrode surface that is helpful in picking up the low-­voltage EEG.

Second, the Zipprep technology helps clear away the first layer of the epidermis. The mechanical action of pressing on the electrode results in the tines clearing away some of the first layer of dead skin cells, exposing the inner, more electrically conductive layer of skin. The conductive gel within the electrode permeates into this newly exposed area, creating a good electrical pathway between the EEG-­carrying inner layers of skin and the conductive traces within the sensor. The EEG signal is then carried through these traces to the BIS™ monitor.

Third, we include a thin layer of sponge that contains a very precise amount of gel. This gel creates a "bridge" between the forehead and the conductive electrode surface.

These combined components help achieve an optimal environment to acquire and maintain the EEG signal.